If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+2x=6
We move all terms to the left:
20x^2+2x-(6)=0
a = 20; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·20·(-6)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-22}{2*20}=\frac{-24}{40} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+22}{2*20}=\frac{20}{40} =1/2 $
| (3/2)b+5=20-b | | 81-7w=2w | | (3/2b)+5=20−b | | 2(x-3)=4(4x-4) | | -40x+25=-15 | | 4^2x+7+6=70 | | 24f+55=4f-5+8f | | 2f/7=f-5/21 | | 7x+12=5x+25 | | 4m²=24 | | 4m²-4m=24 | | x+.3x=23 | | -3k=-39 | | 7-2^x=5 | | 76-u=25 | | 11x-143=6x-8 | | 2f=-24 | | 7x*3=26 | | 6x+13=43-2xx= | | 3x-0.5=x | | 11)(4p+4)-4p=4(7p-7) | | -9=-6+h | | t2=169 | | 122+n=536/2+122 | | -2m=-40 | | 2x+7=-83+8x | | -27+8p=27+2p | | 40=m-41 | | M13=4xx11 | | x2/2-32=0 | | f-7=92 | | 4w+5=3w+11 |